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a b s t r a c t

In this study, the dynamic instabilities and transient vibrations of a bimaterial beam

with alternating magnetic fields and thermal loads are investigated. Materials are

assumed isotropic, and the physical properties are assumed to have unique values in

each layer. Based on the Hamilton’s principle, the equation of motion is derived in which

the damping factor, the electromagnetic force, the electromagnetic torque, and the

thermal load are considered. The solution of thermal effect is obtained by superposing

certain fundamental linear elastic stress states which are compatible with Euler

Bernoulli beam theory. Using the Galerkin’s method, the equation of motion is reduced

to a time-dependent Mathieu equation. The numerical results of the regions of dynamic

instability are determined by the incremental harmonic balance (IHB) method, and the

transient vibratory behaviors are presented by the fourth-order Runge–Kutta method.

The results show that the responses of the dynamic instability and transient vibrations

of the system are influenced by the temperature increase, the magnetic field, the

thickness ratio, the excitation frequency, and the dimensionless damping ratio. The

effects of using different values of parameters are presented to display the instability

and steady vibrations and reveal some interesting characteristics such as beats and

resonance phenomenon.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, the mechanics problems of electromagnet-mechanics of the structures have gained more importance in
industrial application. Many researchers have paid their attention to the mechanical behavior of ferromagnetic structures
such as beams, strips, plates, and shells [1–10]. One of the complicated problems of magneto-solids mechanics is how to
treat the interaction of electromagnetic field with deformable structures.

In addition, thermal buckling or thermal effect may be an undesired phenomenon in many engineering. Temperature
variations from a reference temperature may cause significant changes in the dynamic behavior of a structure, as
temperature fields introduce thermal stress due to thermal expansion or contraction, and cause buckling of structures with
two ends fixed [11,12]. Especially, it has long been known that structures constructed by bonding two or more materials
and then subjected to temperature change, will be in a state of thermal stress [13,14]. Furthermore, the magnetic force and
the temperature variation are interactive because temperature variation causes the value of the conductivity of magneto-
elastic material to change. For a bimaterial pinned beam subjected to an alternating magnetic field and the thermal load,
the thermal effect not only causes a state of thermal stress but also affects the dynamic behavior of the system. Therefore,
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the dynamic problem of a bimaterial beam associated with magneto-elastic material in the alternating magnetic field with
thermal load is an interesting one and can be widely applied in engineering.

The first theoretical analysis of the problem of magneto-elastic buckling of a ferromagnetic plate in a transverse
magnetic field was presented by Moon and Pao [15]. Based on the magnetic force on the distributed diploes and the quasi-
static solution for the magnetization in the deformed plate, Moon and Pao obtained a mathematical mode of the
critical magnetic field. Afterwards, much effort have been directed to develop mathematical models for studying the effect
of magneto-elastic interactions upon static and dynamic behaviors of the magneto-elastic structures by taking into account
the linear/nonlinear effect of deflections [16–21]. More recent advances are the smart or intelligent materials where
piezoelectric and/or piezomagnetic materials are involved. For example, some intelligent structures with sensors and
actuate of piezoelectric layers are designed to generate a damping such that the vibration of structures arisen from external
disturbances is suppressed, or to modify the shape of an airfoil, thereby reducing transverse vortices [5,9]. Although, there
is much research on modeling systems for the linear/nonlinear magnetization of structures, the work on the alternating
transverse magnetic systems with the effect of thermal load is limited. Recently, the means of estimation of thermal effect
in the oscillating magnetic field with linear/nonlinear thermoelastic relations has been developed by Wu [22,23]. For a
small deflection, the results of instability carried out by the incremental harmonic balance (IHB) method in Ref. [22] have
been identified to be good agreement with the results of Moon and Pao [16].

The aim of this study is to analyze the dynamic instabilities of a bimaterial beam subjected to an alternating magnetic
field and thermal load with the linear strain. Materials are assumed isotropic, and the physical properties (the conductivity,
the coefficient of thermal expansion and Young’s modulus) are assumed to have unique values in each layer. The bimaterial
beam made of magneto-elastic steel and silicon is applied to the theoretical model. As a result, the study presents formulas
for the deformation and stress state in a bimaterial beam subjected to a temperature variation which varies linearly in the
longitudinal direction. Again, the electromagnetic force and torque is arisen in one layer only.

In this study, the equation of motion is derived by Hamilton’s principle in which the damping factor, induced
current, and thermal load are considered simultaneously. The solution of thermal effect is obtained with the use of Euler
Bernoulli beam theory, together with basic elements from the theory of elasticity. To obtain the solution in an analytical
form, the assumed mode is employed. Using the Galerkin’s method, the governing equation is reduced to a time-dependent
Mathieu equation. The incremental harmonic balance method is adopted to determine the region of dynamic instability
of the system by transforming the nonlinear governing equation into a set of linearized incremental algebraic equations in
terms of Fourier coefficients, and solving by each incremental step. On the other hand, applying the fourth-order
Runge–Kutta method, the transient vibrations are presented and discussed. The influences of the temperature variation,
the magnetic field, the thickness ratio, the excitation frequency, and the dimensionless damping ratio on the dynamic
response of this bimaterial beam system are investigated. In addition, the effects of using different values of excitation
frequency, thickness ratio, and temperature increase to display the instability and steady vibrations are also presented and
discussed.

2. Equation of motion

2.1. Statement of the problem

Consider the bimaterial beam of length L, width d and thickness h which pinned at its ends, as shown in Fig. 1. The beam
consists of two different materials securely bonded to act as a single beam. Materials are assumed isotropic, and physical
properties are assumed to have unique values in each layers. The thicknesses of the top and lower layers are denoted by ht

and hl, respectively, while the total thickness of the beam is h. A Cartesian coordinate system is chosen such that the x–z

plane is defined the neutral surface of the bimaterial beam, and the y–z plane is located at the left-hand end of the beam.
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Fig. 1. Geometry and dimension of the bimaterial beam.
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Fig. 2. The beam model.

G.-Y. Wu / Journal of Sound and Vibration 327 (2009) 197–210 199
An applied alternating uniform transverse magnetic field B0 ¼ Bm cosð$� tÞ j
*

and a uniform temperature increase DT

cause a displacement (u, v) of the beam, where u and v are the longitudinal and transversal displacements, respectively
(see Fig. 2). It is well noted that changes in temperature in an unconfined beam made of two-layer materials with different
coefficients of thermal expansion (CTE) for each of the layers cause differential strains which give rise to internal thermal
stresses and deformation. For simplicity of this problem, assuming that the width and thickness, compared to the length, is
very small ðd;h5LÞ. and the deflection is small. Thus, the beam is expected to deform according to Euler Bernoulli beam
theory and be in a state of plane stress respecting the x–y plane.

2.2. Extended Hamilton’s principle

The mathematical model of the elastic system can be obtained through the application of the integral of the Hamilton’s
principle, which assumes the following aspect:

dIL ¼

Z t2

t1

dðK þW � UÞdt þ

Z t2

t1

dWc dt ¼ 0 (1)

where K is the kinetic energy of the system, U is the potential energy, W is the work of externally applied force, and Wc is the
work of nonconservative force. For a small deflection, the associated linear strain takes the form exx ¼ qu/qx, where u is the
longitudinal displacement. The elastic strain energy caused by the increment DT has been expressed by the formulas [24]

U ¼

Z L

0
EI2

q2v

qx2

 !2

dxþ

Z L

0

A

2E
½E�xx � gðDTÞ�2 dx (2)

where E is Young’s modulus, I is the moment of inertia of the cross-section, A is the cross-section area, g(DT) is the stress-
temperature coefficient. In addition, the terms of K and W assume the following aspect:

K ¼
1

2

Z L

0
m

qv

qt

� �2

dx

WT ¼

Z L

0
c
qv

qx
dx

WP ¼

Z L

0
Nðds� dxÞ ¼

1

2

Z L

0

Z x

0
p dx

� �
qv

qx

� �2

dx

dWc ¼

Z L

0
cd

qv

qt

� �
dv dx and W ¼WP þWT (3)

where m is the mass of the beam per unit length, N is the axial compressive force of the beam, p is the body force of the
beam per unit length, c is the body couple of the beam per unit length, and cd is the damping ratio. Using the superposition
principle, the total elastic strain energy of the bimaterial beam in this study can be shown as

U ¼

Z L

0

EtIt þ ElIl

2

� �
q2v

qx2

 !2

dxþ

Z L

0

At

2Et

�
½Et�xx � gtðDTÞ�2þ

Al

2El
½El�xx � glðDTÞ�2

�
dx (4)

where the subscripts t and l refer to values calculated for the top and lower layers of the beam, respectively. The It and Il are
the moments of inertia of the top and lower layers about the neutral axis of the beam.
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Eq. (1) can be written as

dIL ¼

Z t2

t1

Z L

0
m
q2v

qt2
þ
qc

qx
þ

q
qx

Z x

0
p dx

� �
qv

qx

� �
þ ðEtIt þ ElIlÞ

q4v

qx4

( )

� EtAt
q
qx

qu

qx
�
gtðDTÞ

Et

� �
qv

qx
� ElAl

q
qx

qu

qx
�
glðDTÞ

El

� �
qv

qx

� �
cd

qv

qt

� �
dv dx dt

þ

Z t2

t1

ðEtIt þ ElIlÞ
q2v

qx2

q
qx
ðdvÞ � ðEtIt þ ElIlÞ

q3v

qx3
dv� cdv�

Z x

0
p dx

� �(
qv

qx
dv

þ EtAt
qu

qx
�
gtðDTÞ

Et

� �
þ ElAl

qu

qx
�
glðDTÞ

El

� �� �
qv

qx
dv

�����L
0

dt

�

Z t2

t1

Z L

0
EtAt

q
qx

qu

qx
�
gtðDTÞ

Eu

� �
þ ElAl

q
qx

qu

qx
�
glðDTÞ

El

� �� �
du dx dt

þ

Z t2

t1

EtAt
qu

qx
�
gtðDTÞ

Et

� �
þ ElAl

qu

qx
�
glðDTÞ

El

� �� �
du

����L
o

dt �

Z L

0
m
qv

qt
dv

� ������
t2

t1

dx ¼ 0 (5)

For a pinned supported beam, the deflections and the bending moments at both ends are zero; hence the boundary
conditions are assumed that

duð0Þ ¼ duðLÞ ¼ dvð0Þ ¼ dvðLÞ ¼ 0

vð0Þ ¼ vðLÞ ¼ 0 and q2v=qx2 ¼ 0 at x ¼ 0 and L (6)

In order to maintain consistency with the boundary conditions, the total strain of the two layers is zero (no
displacement) at both ends of the beam. The equilibrium equations can be obtained

EtAt
q
qx

qu

qx
�
gtðDTÞ

Et

� �
¼ ElAl

q
qx

qu

qx
�
glðDTÞ

El

� �
¼ 0 (7)

m
q2v

qt2
þ cd

qv

qt
þ ðEtIt þ ElIlÞ

q4v

qx4
þ
qc

qx
þ

q
qx

Z x

0
p dx

� �
qv

qx

� �

� EtAt
q
qx

qu

qx
�
gtðDTÞ

Et

� ��
qv

qx
� ElAl

q
qx

qu

qx
�
glðDTÞ

El

� �
qv

qx

� �
¼ 0 (8)

Eq. (7) will be satisfied assuming

qu

qx
�
gtðDTÞ

Et
¼
qu

qx
�
glðDTÞ

El
¼ constant ¼ d̄ðDTÞ (9)

where d̄ðDTÞ is equal to the average strain of the system. Thus, the following conditions must be enforced:

d̄ðTÞ ¼
1

L

Z L

0

qu

qx
�
gtðDTÞ

Et

� �
dx ¼

1

L

Z L

0

qu

qx
�
glðDTÞ

El

� �
dx

¼ �
gtðDTÞ

Et
¼ �

glðDTÞ

El
(10)

Substituting Eq. (10) into Eq. (8), the equation of motion is derived as

m
q2v

qt2
þ cd

qv

qt
þ ðEtIt þ ElIlÞ

q4v

qx4
þ
qc

qx
þ

q
qx

Z x

0
p dx

� �
qv

qx

� �
þ ½AtgtðDTÞ þ AlglðDTÞ�

q2v

qx2
¼ 0 (11)

3. Analytical procedure

3.1. Electromagnetic force F and torque c

For the pinned beam, the displacement function can be written as

vðx; tÞ ¼
X

n¼1;2;...

wnðtÞ sin lnx; 0 � x � L (12)

where l1 ¼ p/L for the first mode.
Based on a small deflection and linear elastic assumptions, the electromagnetic force F and torque c arising from an

alternating uniform transverse magnetic field which acts on a symmetric cross-section beam of thickness hb, width d, and
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length L have been derived by Shih et al. [2] and Wu [22] as follows:

F ¼ p~i ¼
X

n¼1;2;...

s
4

	 

l2

nhb dB2
m xþ

ln

2

� �
sin 2lnx

� �
ð1þ cos 2$tÞwn _wn

~i (13)

c ¼
X

n¼1;2;...

lnFnd cos lnxð1þ cos 2$tÞwn
~k (14)

where s is the conductivity of the material, m0 is the permeability of the vacuum, mr is the relative permeability, and
Fn ¼ w2B2

m sinhðlnhb=2Þ=ðm0mrlnDnÞ, w ¼ 1� mr is the susceptibility, and Dn ¼ mr sinhðlnhb=2Þ þ coshðlnhb=2Þ.
Substituting Eqs. (12)–(14) into Eq. (11) leads to a linear operator PðwÞ

PðwÞ ¼
X

n¼1;2...

m €wn þ cd _wn � l2
nFndð1þ cos 2$tÞwn þ ðEtIt þ ElIlÞl

4
nwn

((

� ½AtgtðDTÞ þ AlglðDTÞ�l2
nwng sin lnx

�
s
4

	 

l3

nhb dB2
mð1þ cos 2$tÞw2

n _wn ln
x2

2
þ

1

4l2
n

ð1� 2 cos 2lnxÞ

" #(

� sin lnx� xþ
1

2ln
sin 2lnx

� �
cos lnx

��
¼ 0 (15)

3.2. Temperature effects

3.2.1. The conductivity

The conductivity s of a material, is simply reciprocal of its resistivity, so s ¼ 1/W, where W is the resistivity of the
material. In addition, the temperature and resistivity of material are dependent, since they are related by the relation

W ¼ W0 þ W0arDT (16)

where W0 is the resistivity at room temperature and ar is the temperature coefficient of resistivity.

3.2.2. The neutral surface and moment of inertia

The solutions consider the top and the lower layers as separate ones subjected to the temperature increase DT. Since
each layer has unique coefficient of thermal expansion, the resulted axial displacements dth

t ðxÞ and dth
l ðxÞ at distance x are

dth
t ðxÞ ¼ atDTx and dth

l ðxÞ ¼ alDTx (17)

where a is the coefficient of thermal expansion. In this study, the deformations of the two layers must be compatible
ultimately. An addition set of elastic displacements, de

t ðxÞ and de
l ðxÞ, must be imposed such that

dth
t þ de

t ¼ dth
l þ de

l (18)

One considers the coefficient of thermal expansion of the lower layer is greater than the top layer of the beam (al4at). The
axial forces existing in the top layer and lower layer in the original assembly must result in deflection compatibility at the
end of the beam such that they stretch the top layer and shorten the lower layer until the final elongations of the two layers
are the same i.e. the axial force Pf acts to the outside direction on the top beam and to the inside direction on the lower
beam. Therefore, the axial elastic displacement of the beam in each layer can be shown as

de
t ðxÞ ¼

Pf x

EtAt
and de

l ¼ �
Pf x

ElAl
(19)

Substituting Eqs. (17) and (19) into Eq. (18), the magnitude of the axial force Pf can be determined,

Pf ¼
ðal � atÞDT dElhlEtht

Etht þ Elhl
(20)

In order to maintain consistency with Euler Bernoulli beam theory, the axial force Pf is equal to the bending moment Mt

and Ml which act on the ends of the bimaterial beam as shown in Fig. 3. Thus the following condition can be obtained:

Mt þMl �
Pf ðht þ hlÞ

2
¼ 0 (21)

If the material beam is linearly elastic and follows Hooke’s law, the curvature k is

k ¼
1

rr
¼

Mt

EtIt
¼

Ml

ElIl
(22)
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Fig. 3. Forces and moments on the bimaterial beam element.
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where rr is the radius of curvature. Using the parallel-axis theorem, the It and Il can be written as

It ¼
dh3

t

12
þ dht

ht

2
� hs

� �2

; Il ¼
dh3

l

12
þ dhl

hl

2
þ hs

� �2

(23)

where hs denotes the distance from the top of the lower layer to the neutral surface. To obtain the hs, we can use the zero
net axial force at the ends of the beam so that

R
st dAþ

R
sl dA ¼ 0. Then the calculation is

Z d=2

�d=2

Z ht�hs

�hs

Et
1

rr

� �
y dy dzþ

Z d=2

�d=2

Z �hs

�ðhlþhsÞ

El
1

rr

� �
y dy dz ¼ 0 (24)

Therefore, the result of hs is

hs ¼
Eth2

t � Elh
2
l

2ðEtht þ ElhlÞ
(25)
3.2.3. The stress-temperature coefficients

As mentioned previously, if the beam is subjected to an amount of temperature change DT without axial restraint, the
elongation will simply be an expansion in length of d. The displacement can be derived by Eq. (18), and shown as

d ¼ dt ¼ dl ¼
Pf L

EtAt
þ atDTL ¼ �

Pf L

ElAl
þ alDTL (26)

Considering an axial restraint beam, the total displacement d becomes zero (but not stress free) on the ends of the beam.
Assuming that the thermal expansion is vanished to opposite contraction by the restraining force P�h, the magnitude of the
P�h can be shown as

P�h ¼ Pt þ Pl (27)

where Pt and Pl are the restraint forces for the top and lower layers, respectively. Now, the beam is no displacement, and
then the axial restraint force is equal to �EA�. The yield Pt, and Pl are,

Pt ¼ �ðatEtAtDT þ Pf Þ and Pl ¼ �ðalElAlDT � Pf Þ (28)

Ultimately, the thermal expansion is canceled out by equal and opposite contraction caused by the restraining force, due to
the total strain is zero for both ends. Therefore, the stress-temperature coefficients in each layer are

gtðDTÞ ¼ EtatDT þ
Pf

At
; glðDTÞ ¼ ElalDT �

Pf

Al
(29)
3.3. Galerkin’s method

In this study, the first mode (n ¼ 1) is considered, which means l ¼ p=L. Taking sin lx as the base function, Galerkin’s
equation leads to

Z L

0
PðwÞ sin lx dx ¼ 0 (30)
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By simplifying Eq. (30), a time-dependent differential equation is derived as follows:

d2w

dt2
þ 2½kþ Bð1þ cos 2$tÞw2�

dw

dt
þ ðo2

L � x cos 2$tÞw ¼ 0 (31)

where rt and rl are the density of the top and lower layers, respectively,

2k ¼ cd

ðrtht þ rlhlÞd
; 2B ¼ shbB2

ml2
ð�4l2L2 � 9Þ

48ðrtht þ rlhlÞ
; o2

0 ¼
ðEtIt þ ElIlÞl

4

ðrtht þ rlhlÞd

o2
L ¼ o2

0 1�
B2

r

B2
c

�
AtgtðDTÞ þ AlglðDTÞ

Pc

 !
; B2

r ¼
B2

m

2
; Pc ¼ ðEtIt þ ElIlÞ

p2

L2

B2
c ¼
ðEtIt þ ElIlÞl

3m0mrD

2w2d sinh
lhl

2

; x ¼
Fl2

rtht þ rlhl
and s ¼ 1

W0 þ W0arDT

The new parameter are defined as O ¼$=oL, t ¼$t, k1 ¼ k=oL, k2 ¼ B=oL, and 2j ¼ x=o2
L . Eq. (31) is simplified to well-

known Mathieu equation:

O2 d2w

dt2
þ 2O½k1 þ k2ð1þ cos 2tÞw2�

dw

dt þ ð1� 2j cos 2tÞw ¼ 0 (32)

3.4. The IHB formulation

In the recent decades, the IHB method has been successfully applied to various types of nonlinear dynamics problems.
The procedure of the IHB method used to solve Eq. (32) is mainly divided into two steps. The first step is a
Newton–Raphson procedure. The second step is to find an approximate solution by assuming a periodic solution and
applying Galerkin’s method.

The current state of vibration corresponding to a point ðO0;j0Þ on instability boundary is denoted by w0. A neighboring
state is reached through a parameter incrementation:

j ¼ j0 þ Dj; O ¼ O0 þ DO; w ¼ w0 þ Dw (33)

Substituting Eq. (33) into Eq. (32) and neglecting the nonlinear terms of Dj, DO, Dw, a linearized incremental equation
is obtained:

O2
0D €wþ 2O0½k1 þ k2ð1þ cos 2tÞw2

0�D _wþ ð1� 2j0 cos 2tÞDwþ 4O0k2ð1þ cos 2tÞw0DwD _w

¼ Rþ 2Djw0 cos 2t� 2DOO0 €w0 � 2DO½k1 þ k2ð1þ cos 2tÞw2
0�
_w0 (34a)

where

R ¼ �fO2
0 €w0 þ 2O0½k1 þ k2ð1þ cos 2tÞw2

0�
_w0 þ ð1� 2j0 cos 2tÞw0g (34b)

The approximate functions w0 and Dw can be expanded into a truncated Fourier series,

w0ðtÞ ¼
X2N�1

k¼1;3;...

ðak sin ktþ bk cos ktÞ and DwðtÞ ¼
X2N�1

k¼1;3;...

ðDak sin ktþ Dbk cos ktÞ (35)

for the principal region of instability, corresponding to a solution of period 2p. N is the number of temporal terms
for calculation.

Substituting (35) into (34a) and using the Galerkin’s procedure, a set of linear equations can be obtained as follows:

½C�fDag ¼ fRg þ DjfPg þ DOfQg (36)

where [C] is the matrix for the Fourier coefficients and fDag is a vector consisting of Fourier coefficients Dak or Dbk, for
example: fDagT ¼ fDa1;Da3;Da5; . . .g. fRg is the corrective vector derived from (34b), and fPg, fQg are vectors obtained from
the second and third right-hand side terms, respectively.

In Eq. (36), a linear system of 2N equations with 2N+2 unknowns Da, Dj and DO has to be solved at each incremental
step. Hence, it is necessary to add two constraints among Da, Dj, and DO. The corresponding procedures used to solve
Eq. (36) and to determine the unknowns are discussed in Refs. [25–27].

4. Numerical results and discussions

Numerical simulations are presented for the dynamic instabilities and transient vibrations of a bimaterial pinned beam
subjected to a uniform alternating transverse magnetic field and thermal load. The bimaterial beam is composed of a lower
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layer beam made from magneto-elastic steel and a top layer beam made from silicon. The material application implies that
when the beam is in impulsion magnetic field, the electromagnetic force and torque is arisen in the lower layer only. In
addition, materials in the lower layer and in the top layer are homogeneous and isotropic, but the coefficients of linear
thermal expansion are different, where al4at . The physical parameters of this system are given as

L ¼ 0:4 m, h ¼ 5� 10�3 m, d ¼ 2� 10�2 m, El ¼ 1:94� 1011 Pa, rl ¼ 7930 kg=m3, al ¼ 11� 10�6 �C�1, mr ¼ 3:0� 103,
m0 ¼ 1:26� 10�6 H=m, ar ¼ 6:5� 10�3 �C�1, W0 ¼ 9:68� 10�8 Om (ohm-meter), Et ¼ 1:72� 1011 Pa, rt ¼ 2330 kg=m3,
at ¼ 2:5� 10�6 �C�1.
4.1. Dynamic instability response

In order to gain further insight into various thermal loads of the bimaterial beam and to show the effects of the magnetic
fields on the dynamic responses of the excited beam, numerical results of the solution were performed a wide variety of
parameters. Now one considers damping parameter k1 ¼ 0 and thickness ratio ht=hl ¼ 1:0, then different temperature
increases are applied. The effect of temperature increase DT on the principal instability region is shown in Fig. 4. It can be
seen from the presented regions that increasing temperature shifts the region to a lower value and produces a large variety
of responses. In this study, the fundamental frequency oL varying with a magnetic field and an increased temperature can
be obtained by Eq. (31), while ½B2

r =B2
c þ ðAtgt þ AlglÞDT=Pc�o1. It displays that, just as the theory predicted, a higher

temperature increase results to a lower natural frequency for this system. While Bm ¼ 0.3 T, ht/hl ¼ 1.0 and DT ¼ 3.0 1C, the
points A, B, and C are 470.0, 463.3, and 450.0 rad/s, respectively, and are located in the principal instability region. These
points corresponding to the time responses will be discussed and shown in the next section. The effects of varying
thickness ratio ht/hl on the principal instability regions associated with different temperature increases are illustrated in
Figs. 5 and 6. As it can be seen, the increase in the thickness ratio ht/hl of the bimaterial beam has the beneficial effect on
increasing the value of natural frequency. If the pinned beam is considered with uniform thickness and material is assumed
to be isotropic, the natural frequency of the beam made from the top layer material silicon is higher than that of the lower
layer material low-carbon steel. It is in accordance with Fig. 6 that the higher thickness ratio results to the higher
fundamental natural frequency of this system. Fig. 7 shows the regions of dynamic instability for different damping
coefficients k1 for ht/hl ¼ 1.0 and DT ¼ 0. It shows that an increase in damping coefficient results in a reduction of the
region of instability. On the other hand, it can be considered that when viscous damping is included, a least magnitude of
the magnetic field is required to make the dynamic instability of the system.
4.2. The part of vibration

In order to analyze the transient vibration characteristics of this system, the fourth-order Runge–Kutta method is
applied to solve Eq. (31) by the step size of 2:0� 10�5. The initial conditions are chosen as dw/dt ¼ 0, w/h ¼ 1.0, and
cd ¼ 0.05.
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While ht/hl ¼ 1.0, $ ¼ 80:0 rad=s, and DT ¼ 0, the result of amplitude versus time associated with different magnetic
fields (Bm ¼ 0.1, 0.3, 0.5 T (tesla)) is shown in Fig. 8. In this case, assuming that DT ¼ 0, the restraint force P�h and the stress-
temperature coefficient gðDTÞwill be zero as well, i.e., the thermal expansion of the system has no contribution to the axial
force. The changes of this nonlinear vibration are determined by the magnetic field only. For the same beam, the increase
temperature, DT is replaced by 1.0, 3.0, and 5.0 1C, respectively. The result of the nonlinear vibration is shown in Fig. 9. It can
be seen from these presented waveforms that either increasing the magnetic field or the temperature shifts the frequency
of the nonlinear system to a lower value, i.e., increasing the period of the nonlinear vibration system. Fig. 10 shows that the
effect of different thickness ratios on the system, while Bm ¼ 0.1 T, $ ¼ 80:0 rad=s and DT ¼ 3.0 1C. The results show that
the increase of the thickness ratio decreases the frequency of the system. It should be noted that the fundamental
frequency of this system corresponding to the magnetic field, the temperature increase, and the thickness ratio can be
obtained through the relation o2

L ¼ o2
0 � ð1� B2

r =B2
c � ½AtgtðDTÞ þ AlglðDTÞ�=PcÞ. In addition, because the small deflection is

assumed, the effect of nonlinear damping B on the region of instability is insignificant as discussed in Ref. [22].
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While k1 ¼ 0, ht/hl ¼ 1.0, DT ¼ 3.0 1C and Bm ¼ 0.3 T are applied, the fundamental frequency of the system becomes
463.28 rad/s. We now consider the cases that the excitation frequency approaches the natural frequency of this system.
Figs. 11 and 12 represent the results of waveforms, when the excitation frequency $ is applied by 80.0 (out of the region),
470.0 (point A, top boundary of the region), 463.3 (point B, in the region), and 457.0 (point C, lower boundary of the region)
rad/s, individually. It is well known that when the ratio of the excitation frequency with respect to the natural frequency of
the system closes to 1.0, the primary region of the dynamic instability occurs, and the intensity of beats decreases
appreciably as the lower boundary of the region of exciting is approached [28]. The values of the excitation frequency
$ ¼ 457:0 (point C) and 470.0 (point A) rad/s are located on the lower and the top boundary of the instability region of this
system, respectively, and the excitation frequency $ ¼ 463:3 (point B) rad/s is equal to the natural frequency. As can be
seen from these waveforms, the beat phenomenon occurs for $ ¼ 457:0 and 470.0 rad/s, and the resonance phenomenon
occurs for $ ¼ 463:3 rad=s. Therefore, the beat and resonance phenomenon of this system agree with the theory
prediction.
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We now consider the case that the magnetic field has a fixed excitation frequency to the system. While Bm ¼ 0.3 T, ht/
hl ¼ 1.0, DT ¼ 3.0 1C and$ ¼ 463.3 rad/s are applied, the results of maximum amplitudes and minimum amplitudes versus
time associated with different thickness ratios and different temperature increases are shown in Figs. 13 and 14,
respectively. As mentioned above, the natural frequency of the beam made from the top layer material silicon is higher than
that of the lower layer material low-carbon steel. Therefore, it is realized that increasing the thickness ratio ht/hl or
decreasing the temperature increase DT leads to the higher value of the fundamental natural frequency. In addition, though
$ ¼ 463.3 rad/s is equal to the fundamental natural frequency of the initial system, the transient vibration is obviously
affected by the changes of the temperature increase or thickness ratio. It is worth mentioning that when ht/hl ¼ 1.5 or
DT ¼ 0.0 1C, the maximum and minimum amplitude is continuous 1.0 and �1.0, respectively, i.e., the vibration is steady. In
fact, the results show that the principal regions of dynamic instability of these two cases (ht/hl ¼ 1.5 or DT ¼ 0.0 1C) are far
away from that of the initial conditions.
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5. Conclusions

Based on the Hamilton’s principle, the assumed mode, the Euler Bernoulli beam theory, and the Galerkin’s method, the
mechanical model of a bimaterial beam subjected to the thermal loads in an alternating transversal magnetic field with
considerations of damping, the electromagnetic force, and torque is derived. For a bimaterial beam, the equation of motion
and the solution of thermal effect are obtained by superposing certain fundamental linear elastic stress state. The results of
the dynamic instability and transient vibrations of the bimaterial beam system are influenced by the following conditions
and parameters: (1) the temperature increase DT; (2) the magnetic field Bm; (3) the thickness ratio ht/hl; (4) the excitation
frequency $, (5) the dimensionless damping ratio k.
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For the same thickness ratio, the results reveal that increasing either the magnetic field or the thermal load decreases
the value of natural frequency of the system. Furthermore, increasing temperature shifts the region of dynamic instability
to a lower value and produces a large variety of responses. Because of the double-layered bimaterial beam with different
coefficients of linear thermal expansion in this study, the effect of thickness ratio on the dynamic instability region and
transient vibration characteristic is obvious, and the results show that increasing the thickness ratio has the beneficial
effect of increasing the value of natural frequency. When the excitation frequency$ is a constant, the transient vibration is
obviously effected by the changes of the temperature increase and thickness ratio.
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